Things to do with Data: Taming University Chemical Biology Knowledge

Hub

hem

http://chembiohub.ox.ac.uk

Brian Marsden SGC, NDM Kennedy Institute of Rheumatology, NDORMS

Covering:

- Who am I and why am I here?
- Chemical Biology what's that?
- The basic science (in 10 minutes)
- So, what's the problem?
- How are we tackling it?
- What have we done so far?
- What's next?

A public-private partnership that supports the discovery of new medicines through open access research

www.thesgc.org

SGC at a glance

- Operations started in June 2004
- 3 government agencies, Wellcome Trust and 10 leading pharma companies
- Aggregate funding in excess of \$300M
- +200*-strong team in Oxford, Toronto & Campinas
- Open Access Policy:
 - Promptly placing results, reagents and know-how in the public domain
 - SGC scientists **never** file patents

SGC

What is chemical biology?

- Chemical biology means different things to different
 people
- Are the projects below examples of chemical biology...?

 Designing molecules to act as high-energy foodstuffs

What is chemical biology?

- Chemical biology means different things to different people
- Are the projects below examples of chemical biology...?

 Using nature's chemistry to produce clean energy

What is chemical biology?

- Chemical biology means different things to different
 people
- Are the projects below examples of chemical biology...?

 Tweaking biological structures at the atomic level

What is chemical biology?

- Chemical biology means different things to different
 people
- Are the projects below examples of chemical biology...?

 Testing the effect of chemicals on biological molecules and cells

What is chemical biology?

 All these (and more!) can be considered as chemical biology...

> ...but also as medicine, physics, engineering, nanotechnology, drug discovery, synthetic biology, biochemistry, etc...

• Too diverse to deal with all at once!

What *sort* of chemical biology?

- ChemBio Hub initial focus:
 - Effect of chemicals on biological molecules and cells

- Why?
 - Expertise of our group
 - Significant amounts of data generated across the University
 - Demand from pharmaceutical industry for this data
 - Complements public data curation initiatives
 e.g. ChEMBL, PubChem

And now for the Science 'Bit'...

Cells

What is a protein?

Proteins – Large biological molecules consisting of one or more long chains of amino acid residues

Amino Acids:

Proteins are made up individual building blocks Polypeptide:

When assembled they form a peptide chain

Protein:

Specific folding of peptide results in a protein

What do proteins do?

Proteins are essential to life and play a significant role in almost every biological function, including:

Catalysing metabolic reactions

Structural components

DNA replication

Controlled protein expression is essential

But it can go wrong

A real-life example

Human PIM1

A protein kinase.

It puts a phosphate on other proteins as a means to cascade important signals within the cell.

When this goes wrong, cancer results.

A real-life example

Human PIM1

A protein kinase.

It puts a phosphate on other proteins as a means to cascade important signals within the cell.

When this goes wrong, cancer results.

A real-life example

Human PIM1

A protein kinase.

It puts a phosphate on other proteins as a means to cascade important signals within the cell.

When this goes wrong, cancer results.

A real-life example

Human PIM1

A protein kinase.

It puts a phosphate on other proteins as a means to cascade important signals within the cell.

When this goes wrong, cancer results.

A real-life example

Human PIM1

A protein kinase.

It puts a phosphate on other proteins as a means to cascade important signals within the cell.

When this goes wrong, cancer results.

What is an assay?

"an analytic procedure for qualitatively assessing or quantitatively measuring the presence, amount or functional activity of a target entity (the analyte)".

- Depending on the question, there are any number of potential assay types available
- Picking the most appropriate assay is crucial
- But knowing what is available and how to implement it is not easy

Kinetic assays Bioassays Ligand binding assays Fluorescence assays Colony count assays Photometric assays Absorbance assays Immunoassays

Generic assay (meta) data capture is very challenging

Western Blot

Generic immunofluorescence protocol

heṁBi

Generic NMR protocol

Target focused small molecule drug discovery

Drug discovery is hard

Drug approval rates by therapeutic area

Many factors to consider when considering drug design -

- Chemical properties
- Adsorption, distribution, metabolism and excretion
- Pharmacokinetic profile
- Toxicity profile
- Off targets affects
- Target binding efficacy

http://hmg.oxfordjournals.org/content/early/2014/07/01/hmg.ddu309.full

Attrition is high

Summary of large pharma productivity between 2005-2010

Current attrition rates are unacceptably high Time for a change in tactic

Taken from (Bunnage, 2011).

Industry is moving to Open Innovation strategy

- Looking for new basic science in academia
- Why?
 - Access 'blue-sky' research
 - New assays, targets, starting points...
- Carrot?
 - Academic gets access
 to industry facilities
 and know-how

OK, fine.

But what's the problem in Oxford?

Challenges for University Researchers

Good science

i.e. data management

• Efficiency

duplication of effort

- Fulfilling Grant Conditions
- Personal progression

finding effective collaborators

Outcomes

partnerships with industry to bridge the gap

wellcometrust

NHS National Institute for Health Research

What sparked this all off?

"It is currently very difficult for one research group within the University to know if another group has expertise in a certain assay or screening technique. There is also no mechanism for one group to know if another group has compounds of interest for either target discovery or lead discovery."

NDM/ISSF University-wide chemical biology audit - 2013

Chemical biology across Oxford

ChemBio

We approache about: What th What th What th

Lots don't use al paper and pen a

Sharing was not v Searching and bet

Bio Hub

say

asked them

ing)

irrently did

ne benefit ies

Hasn't this already been fixed?

Sure, there are lots of tools available.

We initiated what became known as ChemBio Hub

In response to the audit findings we secured funding from:

The ChemBio Hub vision:

- to provide the tools that will make it easier for Oxford University scientists to connect with colleagues to improve their research
- to satisfy funders that the data they have paid for is being managed according to their requirements
- to make new alliances with pharma and biotech partners.

The solution – ChemBio Hub

Capture data, reagents/compounds, expertise –

- With assistance and curation
- In a central repository

Controlled levels of access –

• Within group, department, Oxford or externally

Example outcomes:

- The 'go-to' location for all aspects of University Chemical Biology
- Ability to discover tool compounds against target/protein of interest
- Identification of possible translational routes
- Pushing data externally, attracting pharma funding towards novel targets

To provide:

Better reproducibility

"..though the testimony of a single witness shall not suffice to prove the accused party guilty of murder; yet the testimony of two witnesses ...shall ordinarily suffice to prove a man guilty"

More **discoverable**: easily find out *who* else has worked on similar compounds, what effort is going into similar *targets*, what similar *techniques* or *equipment* are in use.

Better **tools**: to visualise data and aid interpretation

- Saves time in interpretation
- Makes troubleshooting much easier
- Clarifies communication

So, we brought together:

A project manager:

Web developers:

A Knowledge Exchange coordinator:

And a data scientist:

to tackle the problem.

The current funding will support the project until June 2016.

How have we tackled it?

One bite at a time

Getting value to users

Rather than risk this:

- Months of investigation and analysis
- Designing 'the' solution
- Unveiling to users only to discover we've missed the mark

We deliver functionality every

2 weeks:

- With a named individual in mind fixing a specific problem
- Getting feedback straight away
- Without fear of negative findings all results are of interest and influence further actions

Enough background.

Show us some substance!

Just a little bit more context

The first utility we built was ChemBio Crunch.

We took an existing workflow:

Example Alpha Screen data flow from the TDI

And we improved on it:

- Simplified the data flow
- Improved speed of processing
- Fixed quality issues along the way
- And made visualisation and sharing easier

We came up with - ChemBio Crunch

1) Upload raw data

Title*

Save

BMG output file*
Browse... No file selected.
ESXX transfer file*
Browse... No file selected.
Uploaded meta file
Browse... No file selected.

Validate plates for systematic errors

	1	2	3	4	5	6	7	8	9	10	11
4											
3											
5	56582							326173	381292		
5	52896	65075	85063					317623	367916		
	294196	383952									
8	301777	390602									
i	51813	59964					271700	354806			
ł	53029						273011	357599			
	87381				285950	403446					
	85139				274664						
	82559					368353					
	87533					361646					
6	42104					282492	346541				
	38931					287584	358644				
)	578109					564623	560120				
	N 5 5 5555										

3) Calculate IC₅₀ for multiple plates

4) Mark poor fits where observed

1	plat:	coupound	logIC50 🖉	ic50 (nM) 🖉	system_comments	uset	graph
		BDG00021			Low total inhibition, values		
2	2	060a	4.25927396	18166.6127	could be inaccurate	no	
3	2	BDG00021 344a	4.8345796	68324.9943	Low total inhibition, values could be inaccurate	no	
4	2	BDG00019 351a	4.41049146	25733.0618	Low total inhibition, values could be inaccurate	no	

Next Plate 🗲 Export 🗸

Export all workflow graphs as XLSX

5) Export and deposit in ELN (Comments automatically generated where IC₅₀ may be inaccurate)

Results

- Production-ready web application written in 3 weeks
- ChemBio Crunch matches the GraphPad curve fit to within <1% error
- Time to process plates cut by > 10x

"I was just looking at the concentration discrepancies you mentioned and it looks to me like <u>there has been copy and</u> <u>paste error or the template is out of date...</u> If this is the case then it is the kind of thing that <u>would be eliminated by using</u> <u>the new utility</u>!"

ChemBio Hub Crunch

ChemBio Crunch - The assay data analyser Paul Log Out Prev Plate Plate [3]-01 (3 of 3 total plates imported) Next Plate > Export Your data is displayed as a conditionally formatted heatmap Validate your data by eye. You can deselect wells as outliers by clicking the value in each table cell. Deselected cells will turn grey. You can deselect columns and rows by clicking on the label. You can re-select cells by clicking the value again. When you are finished, click Update and you will see the graphs below

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
А	940k	927k	911k	921k	896k	907k	894k	907k	876k	893k	909k	905k	898k	901k	885k	873k	882k	882k	891k	901k	915k	920k	919k	924k
В	863k	827k	829k	814k	829k	815k	801k	805k	801k	820k	803k	801k	795k	819k	823k	815k	809k	801k	850k	846k	847k	846k	851k	908k
С	635k	699k		784k							794k	770k	422k	401k	511k	601k	674k	748k	752k	745k		794k	794k	825k
D	633k	665k	723k		752k	741k		745k			749k	767k	378k	413k	500k	583k	665k	726k	743k				797k	857k
Е	319k	694k							745k	746k	754k	748k	2565	2356		260k	560k	685k	738k	717k	741k			785k
F	310k	670k	758k	743k	738k	741k	727k	730k	729k	742k	745k	724k	1425	1938		257k	582k	697k	744k	745k	739k		788k	842k
G	3705	46k	357k	628k	725k	706k	724k	716k	756k	737k	747k	744k	3116	1045	1710	3990	65k	405k	618k	697k	703k		745k	794k
Н	3287	46k	348k	601k	672k	696k	720k	711k	713k	722k	718k	724k	1520	1083	1387	4009	64k	418k	636k	712k	727k	749k	780k	824k
I.	738k	725k	719k	726k	704k	720k	701k	739k	714k	710k	729k	721k	2869	1634	2964	48k	311k	605k	666k	695k	702k	698k	722k	757k
J	716k	693k	695k	689k	726k	688k	683k	737k	688k	708k	705k	704k	1938	1634	2622	47k	317k	606k	661k	693k	712k	724k	735k	789k
К	801k		755k	744k	733k	733k	727k	744k	724k	737k	739k	720k	760k	749k	726k	732k	748k	742k	764k	739k	766k	751k	771k	797k
L	758k	726k	731k	726k	721k	746k	717k	723k	722k	721k	709k	736k	736k	737k	734k	738k	746k	743k	755k	743k	750k	759k	801k	846k
М	806k		747k	751k	743k	748k	752k	736k	742k	740k	742k	726k	747k	744k	751k	745k	748k	752k	761k	751k	741k	758k	780k	821k
Ν	798k	749k	750k	728k	729k	724k	730k	737k	735k	730k	726k	735k	740k	734k	738k	745k	763k	742k	749k	771k	786k	779k	805k	855k
0	100k	432k	637k	689k	720k	729k	724k	726k	728k	732k	713k	722k	728k	736k	724k	736k	740k	744k	753k	744k	733k	759k	783k	815k
Р	84k	425k	675k	727k	754k							787k	785k	771k	782k	776k	782k	773k	791k	791k	790k	841k	852k	920k

Top plateaus at below 80%

.

ChemBio Hub Crunch

inactive compound

The technology stack

Modular design for resilience and data sharing

- System should "talk" to other installations
- Modules should be self-contained

High level architecture

Silos for groups who want to collaborate together

Global

services

that all can

connect to

Focus on Web Front End Technology

Silos for groups who want to collaborate together

Websites vs apps = different front end

- Jekyll static site for website and blog
 - Easy deployment
 - SEO friendly
 - No database or security issues
 - Easy deployment

chembiohub.ox.ac.uk

- AngularJS for apps
 - Easy-to-follow coding standards for javascript
 - Slick and customisable user experience without code repetition
 - Works with our API which we must develop anyway

Focus on Collaboration

Silos for groups who want to collaborate together

Existing tool for user feedback and Q and A

- Many tools purport to help people collaborate
 - Success can depend on the people and the situation more than the tool
- We chose a simple team messaging tool

slack.com

- Integrated feedback button
- Slack users will be able to message the team and ask each other questions

Focus on Calculations and Data Editing

Silos for groups who want to collaborate together

ChemBio Crunch and future curation apps

- Work with raw data and custom fields
 - Build forms in browser with angularis and JSON Schema
- Open source calculation software
 - Python Pandas to import
 - Python LMFit for curve fitting
 - Matplotlib for graphing
 - RDKit and Openbabel for chemistry calculations

Focus on Data Storage and Transfer Formats

Silos for groups who want to collaborate together

Backend Development and Databases

- PostgreSQL + HStore + RDKit extensions
 - Custom fields allowed
 - No custom nested objects
 - Too difficult to curate
- ChEMBL DB access code
 - Allows us to build the API we need
 - Avoids creating a new schema
 - Uses our preferred framework Django

Data Transfer and Deposition

 ChemBio Hub will allow users to deposit their data in external services

- Where deposition APIs do not exist e.g. ChEMBL- we help build them
- Long term archiving in https://databank.ora.ox.ac.uk/
 - Single records will be packaged with files + json schema.
 - Private projects will be embargoed

ChemBio Hub - Open Source is key

We are open source on Github github.com/thesgc

GitHub

Important for reproducible, open science Important for open collaboration Important for open publications Important for distributed deployment model (virtual machines, less config to get software working)

Great!

What else have you done?

ChemBio Hub ChemReg

Compounds to be registered need to be uniquely identified. Users were concerned about sequential assignment inadvertently allowing others to deduce who had registered private compounds.

So we generate UOxIDs, in a number plate format:

Randomly generated, then checked to ensure they are unique.

The format UOX*aa*nn*bbb* will allow over 1bn combinations of relatively simple to remember identifiers

ChemBio Hub ChemReg - registration complexity

- Stereochemistry same bond organisation but 3D differences
- Tautomeric forms interchangeable structures e.g. ketones and enols
- "Batches" structural information exists already but "real world" data is different, for example commercial supplier, purity.
- Pan Assay Interference (PAINS) compounds may be less desirable to register for some but not others
- Private vs Public compounds
- Blinded / Virtual compounds do not initially have a structure

All of these issues mean you can't just "put" your compounds in a database with a generated ID.

Registration process

Chemical input wizard walks chemists through the process of registration

Registration process

Wizard Welcome to the	9 ChemReg wizard 🟮			
home		add D		finish
	1 of 2			
Draw a mole Use the sketc	cule here her window to draw your compound. Sketcher window provide	d by ChemDoodle.		
Properties alogp		Stereochem options		
H-bond acceptors	0	Free Text Test Field 2	Value Value	•
H-bond donors	OH OH	Test Field 1	Value Add Custom Field	•
PSA 0.00				
Rotatable bonds	ChemDoodle®			

Users can sketch their molecule.

Live calculation of chemical properties gives feedback about the nature of the structure.

Users can add extra custom data to their registration

Save

Registration process

Wizard Welcome to the ChemReg wizard				
home	add t 1 of 4	map •	validate	finish
Add your compounds to be registered. Paste a list of SMILES, Standard InChis				
Paste your SMILES or IDs here		Select which type of Auto-detect	lds you have:	
alternatively upload SD, Chemdraw or Excel file	е.			Process lds
Upload your SD, Chemdraw or Excel files here Upload File		Files added: No files uploaded		
Or Drag And Drop your file here				
Cancel				Process File

Users can add SMILES strings or InChi keys (text-based chemical structure representation) or in standard format files (SDF, ChemDraw or Excel)

Registration process

Paste your SMILES or IDs here

Cn1cnc2c1c(=O)n(c(=O)n2C)C C(CS(=O)(=O)O)N

Select which type of lds you have:

Auto-detect

2 substances were processed of which:

2 substances are not publically registered in ChemBio Hub ChemReg. Initial batches of these substances will be registered in this project for each of these.

No substances were already been registered in this project.

No substances have already been registered as public.

Process Ids

•

Active validation at every step Information about what is currently in the database - overlaps Problems and issues can be identified early in the process

Registration process

Wizard Ploome to the ChemReg wizard			Wizard Welcome to the ChemReg wizard home	add 🗸	map 🗸	validate ✔	finish
home	add 🗸	map	A	Ð		*	
•		•					4 of 4
		2 of 4	Your prepared compound data is listed	below. Click cancel to delete	e this molecule and start again.		
			Export to Excel Export to SD			Re	gister more cor
Id extra details to the list of compounds y	ou have registered			UOx ID	Added on	Added by	
Vi Value Compound SMILES Valid SMILES	e Add Cu	ustom Field					
Smile definition				UOXSTAGV24ERP	Feb 16, 2015		
Smiles label							
Formula			o = s - I				
Mass_mg			ο				
Mol_weight							
A A A A A A A A A A A A A A A A A A A							

Users can add extra custom data relevant to their project Individual projects can make certain data fields mandatory Results can be exported as SD or Excel file for auditing etc.

But it isn't just about whizzy tools...

There's some cool technology involved...

But they don't and won't define a successful project. The aim is to:

- Change **how** researchers work for the better.
- So let's talk about
 Knowledge Exchange...
 - Working with Business
 Development, ISIS, the KE community and
 Pharma/Biotech

People *as well as* data

- Great data management is just the beginning...
 - Ultimately it is **people** we need to connect
 - So that existing data can be turned into new ideas

Industry outreach

• Critical to engage pharma and biotech companies now

- Learn industry-grade data management
- Find out how to best present data to industry
- Obtain industry buy-in to sustain ChemBio Hub

Chicken & Egg: challenge of conveying vision early-on

People *as well as* data

- ChemBio Hub **Oxford** symposium November 2014
- 100 Oxford researchers met and made new crossdepartmental connections
- Generated 17 new collaboration ideas
- Live demos of ChemBio Hub data management tools

People *as well as* data

- ChemBio Hub **Oxford-industry** symposium July 2015
- Showcase Oxford capability to pharma and biotech groups
- Spark connections, conversations and collaborations
- Drive further industry funding of Oxford research

What's next?

Right now

We're recruiting pilot testers from multiple departments to prove the value of ChemBio Reg

- Chemistry
 Physics
- DPAG SGC
- Biochem TDI
- WIMM Pharmacology

And we're thinking about how to tackle Assay Capture

What happens next?

- We have a year to develop code:
 - Registration of compounds
 - Assay definition
 - Assay results
- Keeping usability as a high priority
- Integrating with other systems
- Promoting collaboration and good data management
- Building the community

And then..

- This is a permanent fixture, so it needs a support and growth plan. Multiple options:
 - Professional open source
 - Industry angels
 - Licence
 - Public funding
 - Other flavours and combinations
- We will explore these possibilities and more...

Key Lessons

- You must fully understand the nuances of the data and its metadata before you dive in
- Engaging with users early is key a technical solution that no one uses is a waste of time
- Keep your technology stack nimble, but don't box yourself into a corner with cool toys
- Cultural change is hard (no surprise!)
- Inspiration can come from very unlikely places
- You can build an awesome solution, but that does not guarantee sustainability

Acknowledgements

http://chembiohub.ox.ac.uk

The ChemBio Hub Team

Adam

Paul

hetce

The SGC

Heads of Division

Heads of Departments

University Chemical Biologists

Nuffield Department of Medicine Medical Sciences Division Supported by Wellcometrust

Andy